

hysicsaholics

DPP – 4 (Magnetic Field & Force)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/97

Video Solution on YouTube:-

https://youtu.be/XiTQi7u1bd4

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/51

- Q 1. An electron is moving along positive x-axis. A uniform electric field exists towards negative y-axis What should be the direction of magnetic field of suitable magnitude so that net force on electron is zero?
 - (a) positive z-axis

(b) negative z-axis

(c) positive y-axis

- (d) negative y-axis
- Q 2. A particle of charge q and mass m starts moving from the $\vec{E} = E\hat{\imath}$ and magnetic field $\vec{B} = B\hat{\imath}$ wth a velocity $\vec{v} = v_0\hat{\jmath}$. The speed of the particle will become $2v_0$ after a time :

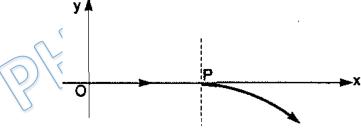
(a)
$$t = \frac{2mv_0}{qE}$$

(b)
$$t = \frac{2Bq}{mv_0}$$

(c)
$$t = \frac{\sqrt{3}Bq}{mv_0}$$

(d)
$$t = \frac{\sqrt{3}mv_0}{qE}$$

Q 3. A particle of specific charge (charge/mass) a starts moving from the origin under the action of an electric field $\vec{E} = E_0 \hat{\imath}$ and magnetic field $\vec{B} = B_0 \hat{k}$. Its velocity at $(x_0, 0, 0)$ is $(4\hat{\imath} + 3\hat{\jmath})$. The value of x_0 is:


(a)
$$\frac{13}{2} \frac{\alpha E_0}{B_0}$$

(b)
$$\frac{16\alpha B_0}{E_0}$$

$$(c) \frac{25}{2\alpha E_0}$$

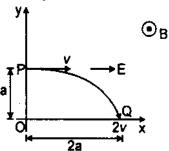
(d)
$$\frac{5\alpha}{2B_0}$$

Q 4. For a positively charged particle moving in a x -y plane initially along the x-axis, there is a sudden change in its path due to the presence of electric and/or magnetic fields beyond P. The curved path is shown in the x - y plane and is found to be non-circular. Which one of the following combinations is possible?

(a)
$$\vec{E} = 0$$
; $\vec{B} = b\hat{\jmath} + c\hat{k}$

(b)
$$\vec{E} = a\hat{\imath}; \vec{B} = c\hat{k} + a\hat{\imath}$$

(c)
$$\vec{E} = 0$$
; $\vec{B} = c\hat{\jmath} - b\hat{k}$


(d)
$$\vec{E} = a\hat{\imath}; \vec{B} = c\hat{k} + b\hat{\jmath}$$

- Q 5. A proton enters in a uniform electric and magnetic fields \vec{E} and \vec{B} respectively. Velocity of proton is \vec{v} . All three vectors are mutually perpendicular. The proton is deflected along positive x-axis when either of the fields or both are switched on simultaneously. Which of the following statement(s) is/are correct?
 - (a) \vec{v} may be along positive y-axis
 - (b) \vec{E} is along positive x-axis
 - (c) \vec{B} may be along positive z-axis
 - (d) \vec{B} may be along negative y-axis

Physicsaholics

Q 6. A particle of charge +q and mass m moving under the influence of a uniform electric field $E\hat{i}$ and uniform magnetic field $B\hat{k}$ follows a trajectory from P to Q as shown in figure. The velocities at P and Q are $v\hat{i}$ and $-2v\hat{j}$. Which of the following statements is/are correct?

- (a) $E = \frac{3}{4} \left(\frac{mv^2}{qa} \right)$
- (b) Rate of work done by the electric field at P is $\frac{3}{4} \left(\frac{mv^2}{a} \right)$
- (c) Rate of work done by electric field at P is zero
- (d) Rate of work done by both the fields at Q is zero
- Q 7. In a certain region of space, electric and magnetic fields are crossed
 - (a) A charged particle moves undeflected in the region only if \vec{V} is perpendicular \vec{E} to \vec{B} both
 - (b) A charged particle must move undeflected in the region, if \vec{V} is perpendicular \vec{E} to \vec{B} both
 - (c)A positron moves undeflected if its velocity is \vec{V} , for an electron to move undeflected its velocity must be \vec{V} .
 - (d)A charged particle may move undeflected even if it is not moving with \vec{V} perpendicular to \vec{B}
- Q 8. A charged particle goes undeflected in a region containing electric and magnetic field. It is possible that
 - (a) $E||B, \overrightarrow{v}||E$
 - (b) \vec{E} is not parallel to \vec{B}
 - (c) $\vec{v} || \vec{B}$ but \vec{E} is not parallel to \vec{B}
 - (d) $\vec{E} || \vec{B}$ but \vec{v} is not parallel to \vec{E}

Comprehension(Q.9 to Q.11)

A particle having charge q=1C and mass m=1 kg is released from rest at origin. There are electric and magnetic fields given by :

 $\vec{E} = (10\hat{\imath})$ N/C for x £ 1.8 m and $\vec{B} = (-5\hat{k})T$ for 1.8 m £ x £ 2.4 m A screen is placed parallel to y – z plane at x = 3.0 m. Neglect gravity forces.

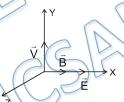
- Q 9. The speed with which the particle with collide the screen (in m/s) is:
 - (a) 3
- (b) 6
- (c) 9

- (d) 12
- Q 10. y-coordinate of particle where it collides with the screen is m.:
 - (a) $\frac{0.6(\sqrt{3}-1)}{\sqrt{3}}$

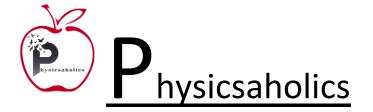
- (b) $\frac{0.6(\sqrt{3}+1)}{\sqrt{3}}$
- (c) $1.2(\sqrt{3}+1)$
- (d) $\frac{1.2(\sqrt{3}-1)}{\sqrt{3}}$

hysicsaholics

- Time after which the particle will collide the screen is second -Q 11.
 - (a) $\frac{1}{5} \left(3 + \frac{\pi}{6} + \frac{1}{\sqrt{3}} \right)$ (c) $\frac{1}{3} \left(5 + \frac{\pi}{6} + \frac{1}{\sqrt{3}} \right)$

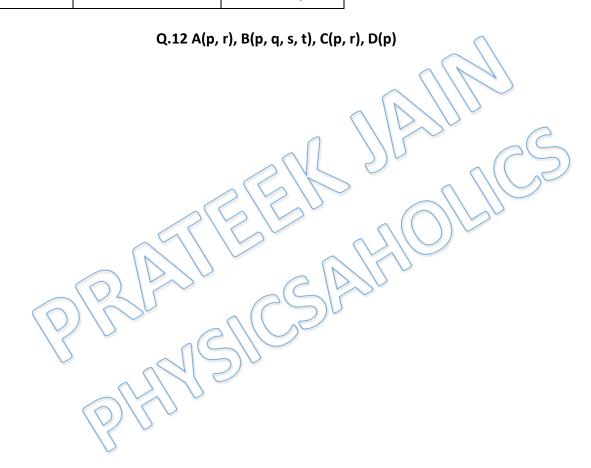

- (b) $\frac{1}{5} \left(6 + \frac{\pi}{3} + \sqrt{3} \right)$ (d) $\frac{1}{3} \left(6 + \frac{\pi}{18} + \sqrt{3} \right)$
- Q 12. Column I lists the field in a region and Column II lists the path of a charge q and mass m on which the particle can move. Match the appropriate entries of Column II with entries of Column I. [Consider all fields to be uniform]

Column I


- (A) Only uniform electric field \vec{E} is present
- (B) Only uniform magnetic field \vec{B} is present
- (C) Only uniform gravitational field \vec{q} is present
- (D) Both uniform \vec{E} and uniform \vec{B} are present

Column II

- (p)The particle can move on straight line
- (q)The particle can move on
- (r)The particle can move on parabolic path
- (s) The particle can remain in rest
- (t)The particle can move in a helical path of constant pitch
- A particle of charge = 1μ C and mass m = 1 gm starts moving from origin at t = 0 under an electric field of 10³ N/C along x-axis and magnetic field of 10 tesla along the same axis with the velocity of $\vec{v} = 20\hat{j}$ m/sec as shown, the speed of the particle at the time of $20\sqrt{3}$ sec will be:


- (a) 20 m/sec
- (b) 40 m/sec
- (c) 10 m/sec
- (d) None
- Q 14. A positively charge particle is projected from origin with speed 8m/sec at an angle $\pi/3$ with + x axis and $\pi/6$ with +y axis. There are uniform electric and magnetic field along -x axis and + x axis respectively. If B= 1T and E = 1N/c and π = 22/7
 - (a) Charge will return to origin after some time.
 - (b) Its kinetic energy will first decrease then increase.
 - (c) charge will cross yz plane with positive y coordinate.
 - (d)Nothing can be said as charge and mass are not given

Answer Key

Q.1 a	Q.2 d	Q.3 c	Q.4 b	Q.5 a, b, c
Q.6 a, b, d	Q.7 d	Q.8 a, b	Q.9 b	Q.10 d
Q.11 a	Q.13 b	Q.14 b,c		

